Lenovo GOAST Bioinformatics Solution

A Genomics and Bioinformatics Optimized System

Smarter technology for all

Highlights

Extremely fast analytics

Bioinformatics optimized hardware runs sequential workflows faster: e.g. processes a 30x whole genome in ~18 minutes and a 50x whole exome in ~30 seconds

Multi-purpose Bioinformatics use

Leverage BOSS's high-core, fast I/O, and high-memory specs to run any Bioinformatics or HPC tools or scripts

Increases lab productivity

Faster time to insight: e.g. up to ~11K whole genomes/ node/year

Cost effective

Up to 50% less than boutique solutions relying on GPUs or FPGAs without additional licensing fees. A single GOAST server can replace up to 50 standard nodes

Scalable

Deploy as a single-node appliance or as a cluster and grow linearly with flexibility

Bioinformatics is the computational analysis of biomedical data powering research all the way from basic biology, to medicine, to drug discovery, to agriculture, and more. The deluge of bioinformatics data generated in the last two decades has prompted researchers to gradually shift their workloads from desktop to cluster to supercomputer analytics. Yet to date, even at cluster and supercomputer speeds, large-scale bioinformatics still faces long execution times on massive volumes of data, which delays "time to answer".

In turn, lengthy analyses severely impact academics' ability to obtain grants and publish papers and companies' growth and profits. The only high-performance solutions to mitigate these challenges are single-purpose boutique solutions requiring expensive specialty hardware and substantial licensing fees. These single-purpose solutions require organizations to purchase multiple architectures to support other types of research in their datacenter since bioinformatics analytics does not exist in a vacuum. Even those organizations working in a single subfield of Bioinformatics (e.g. in genomics) find that the single-purpose boutique solutions are not enough. For example, those performing secondary genomics analytics find that they also need computational resources to gather, select, store, manage, transform, and describe their data, in both primary and tertiary downstream analyses. General-purpose datacenters worldwide feel this need even more acutely since the Omics (Genomics, transcriptomics, proteomics) are only a fraction of the users they must serve. Therefore, Lenovo developed the GOAST system, a Genomics and Bioinformatics Optimized platform.

Extremely Fast Bioinformatics Analytics

Lenovo GOAST is a multi-purpose system specifically engineered to meet the demands of bioinformatics workloads. GOAST leverages an architecture of carefully selected hardware tuned to accelerate bioinformatics performance. Lenovo GOAST's high-core, fast I/O, and high-memory specs (Table 1) excel at running the massively parallel applications and sequential workflows common in Bioinformatics, including multi-omics (genomics, transcriptomics, proteomics) applications. GOAST accelerates mapping and whole-genome sequencing (WGS) variant calling analytics from days to minutes—a process that today in many datacenters around the world takes 40-150 hrs. runs in just ~18 minutes in GOAST systems (Table 2). GOAST Plus runs the total end-to-end germline workflow execution in 48 min. for the median (or 54 min. for the last) sample in a batch run when accounting for all steps and job queuing. The GOAST Base system, a priceperformance option (Table 3), runs mapping/alignment and variant calling in ~58 minutes or ~3.0 hr. for the end-to-end workflow. GOAST also processes whole-exome sequencing (WES) samples at 50x coverage in as little as ~30 seconds or ~1.5 minutes in the Plus and Base configurations, respectively.

Table 1: GOAST reference architectures for bioinformatics

	GOAST Base	GOAST Plus
Processor	2x Intel 6248R CPUs	8x Intel 8280 CPUs
Memory	384GB RAM, 12x 32GB/2933MHz DIMMs	1.5TB RAM, 48x 32GB/2933MHz DIMMs
Storage	Min. 2TB SAS SSD	Min. 4TB NVMe

*The GOAST reference architecture is fully customizable

High-Performance | Multi-Purpose | Bioinformatics

 Table 2: Execution of the median sample when running a batch of 30x

 NA12878 WGS samples on the GATK v.4.2 Germline variant calling pipeline on a GOAST Plus system

Step	Min./sample
SamToFastqAndBwaMemAndMba	11.3
MarkDuplicates	3.6
SortSampleBam	9.0
BaseRecalibrator	2.5
GatherBamFiles	1.4
ApplyBQSR	1.5
HaplotypeCaller	6.2
MergeVCFs	1.4
End-to-end Workflow	47.9
Mapping + Calling	17.6

 Table 3: Execution of a the median sample when running a batch of 30x

 NA12878 WGS samples on the GATK v.4.2 Germline variant calling pipeline on a GOAST Base server

Step	Min./sample
SamToFastqAndBwaMemAndMba	39.6
MarkDuplicates	8.8
SortSampleBam	19.7
BaseRecalibrator	6.6
GatherBamFiles	6.2
ApplyBQSR	5.5
HaplotypeCaller	18.2
MergeVCFs	6.9
End-to-end Workflow	181.3
Mapping + Calling	57.8

Increases lab productivity

Accelerated execution speeds mean you get to process more samples, find answers faster, and generate breakthroughs that much sooner. GOAST outperforms any other competing CPU-based (and even the FPGA- and GPU-based) systems because we tune our systems to meet the requirements of bioinformatics pipelines running in-node workloads rather than those assumed in traditional HPC workloads. The result is the ability to run software pipelines in higher throughputs. Higher throughput capacity means batches of samples analyzed in less time. **(Table 4)**.

Table 4: Lab Productivity for Omics expected on a single GOAST systemgiven the performance in Table 2 and Table 3

Expected Lab Productivity	30x WGS processe	5 Samples d (n)	50x WES processe	•
	GOAST Plus	GOAST Base	GOAST Plus	GOAST Base
WGS/day/node	30	8	999	279
WGS/year/node	10,982	2899	364,763	101,713

Multi-purpose Bioinformatics use

GOAST is a high-performance system for multi-purpose Bioinformatics use. The system comes preloaded with Omics tools to get you up and running on day one or it can be fully customized with the Bioinformatics tools of your choice.

For multi-omics analytics: Lenovo pre-installs the tools and other dependencies in Table 5 necessary to run the Broad Institute's GATK Best Practices for Germline SNP and Indel discovery. The Omics methods in Table 5 provide mapping and alignment, sorting, duplicate marking, and haplotype variant calling algorithms. Lenovo GOAST also provides pre-configured scripts to allow you to run (submit, monitor, manage) samples on the Germline workflow optimally on Lenovo hardware.

The tools pre-installed in Table 5 will allow you to run the following analyses with your own scripts:

- Germline SNP and Indel
- Germline joint genotyping
- Germline copy number variant (CNV)
- Somatic short variant discovery (SNVs + Indels)
- RNAseq (SNPs + Indels)

For other Bioinformatics: Install any tools of your choice (see examples in Table 6) on GOAST systems or talk to our team about pre-installing your software pipeline of choice.

Table 5: Genomics analytics software and other dependencies pre-installed by GOAST 2.0

Software	Version
GATK	4.2.0.0
BWA	0.7.17
Samtools	1.11
Picard Tools	2.25.0
JSONPP	1.3.0
Slurm	20.02.5
java	java-1.8.0-openjdk-devel
OS	CentOS 7.9

*GOAST systems currently use Cromwell as the workflow manager, Slurm as the job scheduling system, and MySQL to manage and collect workflow metadata.

Cost effective

GOAST leverages an optimized CPU-based architecture thus it requires no FPGAs or GPUs of any kind for acceleration A CPU-based infrastructur costs 50% or lower than be or GPUs and no licensing fe R&D group continually test and releases to its custome standardized workflows su Best Practices at no cost. I reduce investments neede since a single GOAST Plus standard nodes, reducing other expenses, including

Table 6: Examples of the multi-purpose uses for the GOAST systems

Field	Bioinformatics Method	Purpose
Genomics	Genome assembly Variant calling	Decipher instructions in DNA Genotype to phenotype
Transcriptions	RNAseq	Decipher RNA instructions
Proteomics	Gene/Protein alignment Protein/DNA Similarity searching 3D Structural prediction Molecule interactions	Decipher Proteins Drug discovery Disease diagnosis Biomaker identification
Cheminformatics	Molecular Dyamics CryoEM	Drug design
General Bioinformatics	Data wrangling Data mining Biostatistics Phylogenetics Custom scripts	Everything else

Easy-to-use

For omics analytics, we preinstall the opensource tools in Table 5. At no cost to the user, we also provide the GOAST utility—a set of wrapper scripts to submit, monitor, manage, and simplify running GATK pipelines at the command-line. You can run any of the pre-installed omics pipelines either on the bare metal installation or as a Docker container. GOAST systems can be easily integrated into new or existing clusters and can be fully customized from an architecture, system, or software perspective.

re and open source tools mean	calling performance you seek
ooutique solutions relying on FPGAs fees. The Lenovo Bioinformatics sts new bioinformatics pipelines	The number of WGS you need to process daily per node
ners hardware-tuned versions of uch as the Broad Institute's GATK In addition, GOAST solutions can	The number of WGS you need to process annually per node
ed to support large-scale projects s server can replace up to 50	You regularly process
hardware, maintenance costs, and power consumption and cooling.	If you have to process >10K WGS/yr. and
purpose uses for the GOAST systems	Regarding points of failure

of labs of all sizes, from small research groups, to commercial labs, and to national population-level projects. This includes transitioning from WES to WGS, undertaking a new project with greater scope and complexity, and expanding both data and users. Scale linearly simply by adding compute and storage building blocks as needed.

The performance of Lenovo GOAST scales linearly from singlenode appliance to cluster implementation to serve the needs

Which GOAST Configuration is right for me?

About you	GOAST Base	GOAST Plus
Your top priority	Budget	Fastest performance
WGS mapping + variant calling performance you seek	58 minutes/WGS	18 minutes/WGS
WES mapping + variant calling performance you seek	2 minutes/WES	30 seconds/WES
The number of WGS you need to process daily per node	-8 WGS/day/node	Min. 4TB NVMe
The number of WGS you need to process annually per node	~3K WGS/yr./node	~11K WGS/yr./node
You regularly process	1-10 WGS samples at a time per node	>10 WGS samples at a time per node
If you have to process >10K WGS/yr. and	Don't mind managing a multi-node solution	Prefer simplicity of man- aging fewer nodes
Regarding points of failure	Want to avoid a single point of failure	Not overly concerned with single points of failure
Best option for	General omics and bioinformatics	High throughput (batches of samples) or high-memory (e.g. de novo assembly) workloads

To Learn More Visit us at:

Scalable

- GOAST case study on Deep sequencing and De novo assembly at the University of Delhi
- GOAST in Coronavirus research
- **GOAST** in Precision Medicine
- Animated GOAST video
- GOAST site

